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Abstract

The linear and nonlinear stability theories for characterization of condensate film flow down on the outer surface of

a rotating infinite vertical cylinder is investigated analytically. A generalized nonlinear kinematic model is derived to

represent the physical system and is solved by the long-wave perturbation method in a two-step procedure. In the first

step, the normal mode method is used to characterize the linear behaviors. The amplitude growth rates and the

threshold conditions are characterized subsequently and summarized as the by-products of the linear solutions. In the

second step, an elaborated nonlinear film flow model is solved by using the method of multiple scales to characterize

flow behaviors at various states of sub-critical stability, sub-critical instability, supercritical stability and supercritical

explosion. The modeling results indicate that by increasing the rotation speed, X, and decreasing the radius of cylinder,

R, the film flow becomes less stable, generally.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Laminar film condensate on a moving substrate has

many engineering application, such as heat exchangers,

condensers, nuclear reactors. For example, the rota-

tional cylinder condenser is widely used in paper mills as

a paper drum. Steam is fed into a rotating cylinder, on

the outer surface of which moist paper is bound and

is caused to move with the cylinder surface. Because

the temperature of the moist paper is lower than the

saturation temperature of steam, the vapor conden-

sates. As a result, a condensate film is formed. The
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condensate film flow easily forms waves, ripples or some

other time-dependent phenomena. The waves, propa-

gating at the film surface, increase the interfacial trans-

fers.

The theory of laminar condensate film flow induced

by gravity was firstly developed by Nusselt [1], but the

stability problem of condensate falling flow had never

been investigated until 1970s. Bankoff [2] used the long-

wave perturbation method to study the linear instability

problem of the condensate film flow. Without consid-

ering the temperature disturbance, the result showed

that film condensation on a vertical wall is always

unstable. Marschall et al. [3] accounted the disturbances

in the temperature field and predicted the existence of a

critical Reynolds number below which the condensate

film flow is stable. They concluded the condensation will

stabilize the film flow, while evaporation destabilize the

flow. In previous studies, the mass transfer due to phase
ed.
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Nomenclature

Cp specific heat of fluid

d complex wave celerity¼ dr þ idi
g gravitational acceleration

h� film thickness

h�0 local base flow film thickness

hfg latent heat

K thermal conductivity of the fluid

Nd dimensionless parameter¼ð1� bÞn2=bPr2
p� fluid pressure

p�g vapor pressure

Pe local Peclect number¼ PrRe
Pr Prandtl number¼ qmCp=K
R� radius of cylinder

Re Reynolds number¼ u�0h
�
0=m

Ro Rotation number¼X�h�0=u
�
0

r�, z� coordinates transverse to and along the

cylinder surface

S� surface tension of the fluid

t� time

T � fluid temperature

T �
s vapor saturation temperature

T �
w wall temperature

u�0 reference velocity¼ gh�20 =4mC
u�, v�, w� velocities along r�-, h�- and z�-directions,

respectively

Greek symbols

a dimensionless wave number

b density ratio¼ qg=q
e infinitesimal parameter

n Jakob number¼CpðT �
s � T �

wÞ=hfg
g dimensionless perturbed film thickness

h dimensionless temperature

k perturbed wave length

l fluid dynamic viscosity

m fluid kinematic viscosity

q fluid density

qg vapor density

X� constant angular velocity.

u stream function

Superscripts

* dimensional quantities
0 differentiation with respect to h

Subscripts

t, r, z partial differentiation with respect to the

subscript

0; 1; 2; . . . : expansion order of the long wave
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change at the interface was not considered. €UUnsal [4]

modified the kinematic condition by using the interfacial

energy balance equation, and found the finite critical

Reynolds number for the vertical wall. Essentially, the

linear stability analysis can only be applied to study the

cases of infinitesimal disturbances. When disturbance

grows to be of a finite value, linear stability theory be-

comes invalid.

Benney [5] studied the nonlinear evolution equation

for free surfaces of the film flows by using the method of

small parameters. The solutions thus obtained can be

used to predict nonlinear instability conditions. How-

ever, the solutions cannot be used to predict supercritical

stability since the influence of surface tension is ne-

glected in the modeling process. The effect of surface

tension was studied by Lin [6], Nakaya [7] and Krishna

et al. [8] who considered it as one of the necessary

condition and treated it in terms of zeroth order terms.

Hwang and Weng [9] showed that the conditions of both

supercritical stability and sub-critical instability are

possible to occur for a film flow system.

Extensive studies on the hydrodynamic stability

problems regarding the fluid films flowing down a ver-

tical cylinder surface have already investigated by sev-

eral researchers. Krantz et al. [10] presented an
asymptotic solution and pointed out that the effect of

curvature on the stability of the film flow is indeed sig-

nificant. Rosenau and Oron [11] derived an amplitude

equation which describes the evolution of a disturbed

free film surface traveling down an infinite vertical

cylindrical column. The numerical modeling results

indicated that both conditions of supercritical stability

and sub-critical instability are possible to occur for the

film flow. Hung et al. [12] investigated the weakly non-

linear stability analysis of a condensate film flowing

down a vertical cylinder. They also showed that super-

critical stability in the linearly unstable region and

sub-critical instability in the linearly stable region can

co-exist. They also indicated that the lateral curvature of

the cylinder has the destabilizing effect on the film flow

stability.

It was found that the stability problem of practical

condensate film flows to the outer surface of a rotating

vertical cylinder has not been fully explored so far in

literature. These types of stability problems are indeed of

great importance to many industrial applications. As the

centrifugal force is introduced into the governing equa-

tion, the complexity of mathematical calculation is in-

creased. But the results are more compatible with the

practical situation.



C.I. Chen et al. / International Journal of Heat and Mass Transfer 47 (2004) 1937–1951 1939
2. Problem formulation

In this study, the axisymmetric flow of an incom-

pressible, condensate flow on the outer surface of a

vertical cylinder which rotates with a constant velocity

X� is considered. The asterisk represents that this

physical parameter is dimensional quantity. The appro-

priate physical configuration is shown schematically in

Fig. 1. In this case, all associated physical properties and

the rate of film flow are assumed to be constant (i.e.

time-invariant). Cylindrical polar coordinate ðr�; h�; z�Þ
are used, where r� denotes the radial direction perpen-

dicular to the centerline of the cylinder, h� denotes the

circumferential direction and z� denotes the axial direc-

tion. The liquid–air interface is located at r� ¼
R� þ h�ðz�; t�Þ, where R� is the cylinder radius and h� is

the film thickness. Let u� and w� be the velocity com-

ponents in r�and z� directions, respectively. The equa-

tions of continuity, motion and energy can be expressed

as
1
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Fig. 1. Schematic diagram of a condensate thin film flow

traveling down along a rotating vertical cylinder.
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where T �, q, p�, l, Cp and K are the fluid temperature,

density, pressure, dynamic viscosity, specific heat and

the thermal conductivity of the fluid, respectively.

The thickness of film flowing down on the cylinder

inner wall is measured by Takamasa and Kobayashi [13]

and the result shows the film is very thin. In consequence

it is reasonable to assume that the tangential velocity is

constant throughout the radial direction in the thin film,

i.e. v� ¼ R�X�.

The boundary conditions on the wall of the cylinder

at r� ¼ R� are given as

u� ¼ 0; w� ¼ 0; T � ¼ T �
w: ð5Þ

The boundary conditions at free surface of r� ¼ R� þ h�

are derived based on the results given by Edwards et al.

[14]. The vanishing of shear and normal stresses on free

surface give another boundary condition and the free

surface temperature is assumed to the same as the vapor

saturation temperature.
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The kinematic condition that the flow cannot travel

across a free surface can be described as
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where T �
s is vapor saturation temperature, T �

w is wall

temperature, p�g is the vapor pressure, S� is the surface

tension and hfg is the latent heat of phase change. By

introducing the stream function, u�, into dimensional

velocity components, they become

u� ¼ 1

r�
ou�

oz�
; w� ¼ � 1

r�
ou�

or�
: ð10Þ

It is customarily to define flow associated dimensionless

quantities as

z ¼ az�

h�0
; r ¼ r�

h�0
; R ¼ R�

h�0
; t ¼ au�0t

�

h�0
; h ¼ h�

h�0
;

u ¼ u�

u�0h
�2
0

; p ¼
p� � p�g
qu�20

; Re ¼ u�0h
�
0

m
;

S ¼ S�3

24q3m4g

� �1=3

; a ¼ 2ph�0
k

; h ¼ T � � T �
w

T �
s � T �

w

;

Pr ¼ qmCp

K
; Pe ¼ PrRe; Nd ¼ ð1� bÞn2

bPr2
; ð11Þ

where h�0 is the constant film thickness of local base flow,

g is the gravitational acceleration, Pr is the Prandtl

number, Pe is the Peclect number, Re is the Reynolds

number, R is the dimensionless radius of the cylinder, u
is dimensionless stream function, S is dimensionless

surface tension, a is the dimensionless wave number, n is

the Jakob number, b is density ratio, h is dimensionless

temperature and k is the wavelength. u�0 is the reference

velocity and can be expressed as [15]

u�0 ¼
gh�20
4mC

; ð12Þ

where C ¼ 2ð1þ RÞ2 ln 1þR
R

� �
� ð1þ 2RÞ

h i�1

.

In order to investigate the effect of angular velocity,

X�, on the stability of the flow field, the dimensionless

parameter, Rotation number, is introduced

Ro ¼ X�h�0
u�0

: ð13Þ

Assuming that a � 1, the nondimensional governing

equations and the associated boundary conditions can

be expressed as

pr ¼ a½Re�1ðr�1urrz � r�2urzÞ� þ Ro2
R2

r
þOða2Þ; ð14Þ

r�1ðrðr�1urÞrÞr ¼ 4Cþ aReð�pz þ r�1utr þ r�2uzurr

� r�3uzur � r�2ururzÞ þOða2Þ;
ð15Þ

r�1ðrhrÞr ¼ aPeðht � r�1urhz þ r�1uzhrÞ þOða2Þ: ð16Þ

At the cylinder surface ðr ¼ RÞ

ur ¼ uz ¼ h ¼ 0; ð17Þ
and at free surface ðr ¼ Rþ hÞ

ðr�1urÞr ¼ Oða2Þ; ð18Þ

p ¼ �2S � Re�5=3ð2CÞ1=3ða2hzz � r�1Þ
þ af�2Re�1½ðr�2ur � r�1urrÞhz þ r�2uz � r�1urz�g
� Nd � Re�2 � h2r þOða2Þ; ð19Þ

h ¼ 1; ð20Þ

n � ðhr � a2hzhzÞ þ aPeðr�1uz þ r�1urhz � htÞ ¼ 0: ð21Þ

The subscripts r, z, rr, zz and rz are used to represent

various partial derivatives of the associated underlying

variables.

Since the modes of long-wavelength that gives the

smallest wave number are most likely to induce flow

instability for the film flow [16,17], the dimensionless

wave number of the long-wavelength mode, a, can then

be chosen as the perturbation parameter for variable

expansion. By so doing the stream function, flow pres-

sure and temperature can be perturbed and represented

as

u ¼ u0 þ au1 þOða2Þ; p ¼ p0 þ ap1 þOða2Þ;
h ¼ h0 þ ah1 þOða2Þ: ð22Þ

The flow conditions of the thin film can be obtained by

inserting above expressions into Eqs. (14)–(21) and then

solving systematically the resulting equations. In prac-

tice, the nondimensional surface tension S is a large

value; the term a2S can be treated as a quantity of zeroth

order [12,18]. By careful calculation, the zeroth order

and first order solutions can be obtained and are given in

Appendix A. The zeroth and the first order solutions are

then inserted into the dimensionless free surface kine-

matic equation to yield the following generalized non-

linear kinematic equation

ht þ X ðhÞ þ AðhÞhz þ BðhÞhzz þ CðhÞhzzzz þ DðhÞh2z
þ EðhÞhzhzzz ¼ 0; ð23Þ

where X ðhÞ, AðhÞ, BðhÞ, DðhÞ and EðhÞ are given in

Appendix B.
3. Stability analysis

The dimensionless film thickness when expressed in

perturbed state can be given as

hðt; zÞ ¼ 1þ gðt; zÞ; ð24Þ

where g is a perturbed quantity to the stationary film

thickness. By inserting Eq. (24) into Eq. (23) and col-

lecting all terms up to the order of g3, the evolution

equation of g becomes
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gt þ X 0gþ Agz þ Bgzz þ Cgzzzz þ Dg2z þ Egzgzzz

¼ � X 00

2
g2

�
þ X 000

6
g3 þ A0g

�
þ A00

2
g2
�
gz

þ B0g

�
þ B00

2
g2
�
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�
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2
g2
�
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þ ðDþ D0gÞg2z þ ðE þ E0gÞgzgzzz
�
þOðg4Þ: ð25Þ

The values of X , A, B, C, D and E and their derivatives

are all evaluated at the dimensionless height, h ¼ 1, of

the film flow.

3.1. Linear stability analysis

As the nonlinear terms in Eq. (25) are neglected, the

linearized equation is obtained as

gt þ X 0gþ Agz þ Bgzz þ Cgzzzz ¼ 0: ð26Þ

The normal mode analysis method can be performed by

assuming that

g ¼ a exp½iðz� dtÞ� þ c:c:; ð27Þ

where a is the perturbation amplitude and c.c. is the

complex conjugate counterpart. The complex wave

celerity, d, is given as

d ¼ dr þ idi ¼ Aþ iðB� C � X 0Þ; ð28Þ

where dr is the linear wave speed and di is the linear

growth rate of the wave amplitudes. The flow is in lin-

early unstable condition if di > 0, and is in linearly sta-

ble condition if di < 0.

3.2. Nonlinear stability analysis

In order to characterize the nonlinear behaviors of

thin film flows, the method of multiple scales [8] is

employed here and presented as

o
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; ð29Þ
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gðe; z; z1; t; t1; t2Þ ¼ eg1 þ e2g2 þ e3g3; ð31Þ

where e is a small perturbation parameter. The per-

turbed variable as expressed in terms of the perturbation

parameter is given as

ðL0 þ eL1 þ e2L2Þðeg1 þ e2g2 þ e3g3Þ ¼ �e2N2 � e3N3;

ð32Þ
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; ð35Þ

N2 ¼
X 00

2
g21 þ A0g1g1z þ B0g1g1zz þ C0g1g1zzzz þ Dg21z

þ Eg1zg1zzz; ð36Þ

N3 ¼ X 00g1g2 þ A0ðg1g2z þ g1zg2 þ g1g1z1Þ
þ B0ðg1g2zz þ 2g1g1zz1 þ g1zzg2Þ þ C0ðg1g2zzzz

þ 4g1g1zzzz1 þ g1zzzzg2Þ þ Dð2g1zg2z þ 2g1zg1z1Þ
þ Eðg1zg2zzz þ 3g1zg1zzz1 þ g1zzzg2z þ g1zzzg1z1Þ
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2
B00g21g1zz þ 1
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2
1z

þ E0g1g1zg1zzz: ð37Þ

Eq. (32) can now be solved order by order. After col-

lecting the terms of order e and solving for the result-

ing equation L0g1 ¼ 0, the solution can be easily

obtained as

g1 ¼ aðz1; t1; t2Þ exp½iðz� drtÞ� þ c:c: ð38Þ

Similarly, the solution of g2 and the secular condition

for the equation of order e2 can also be derived and

given, respectively, as

g2 ¼ ea2 exp½2iðz� drtÞ� þ c:c: ð39Þ

By plugging both g1 and g2 into the equation of order e3,
the resulting equation becomes

oa
ot2

þ D1

o2a
oz21

� e�2diaþ ðE1 þ iF1Þa2�aa ¼ 0; ð40Þ

where

e ¼ er þ iei

¼
X 0

2
� B0 þ C0 � Dþ E

� �
16C � 4Bþ X

þ i
�A0

16C � 4Bþ X
; ð41Þ

D1 ¼ B� 6C; ð42Þ

E1 ¼ ðX 00 � 5B0 þ 17C0 þ 4D� 10EÞer � A0ei

þ 1
2
X 00�

� 3
2
B00 þ 3

2
C00 þ D0 � E0�; ð43Þ

F1 ¼ ðX 00 � 5B0 þ 17C0 þ 4D� 10EÞei þ A0er þ 1
2
A00:

ð44Þ

The overhead bar appeared in the above expressions

stands for the complex conjugate of the same variable.

Eq. (40) is the so-called Ginzburg–Landau equation [19]

and can be used to characterize the nonlinear behaviors

of the traveling film flow.

In order for a supercritical stable region to exist in

the linearly unstable region ðdi > 0Þ, the condition is

given as E1 > 0. The associated wave amplitude ea0 in
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the supercritical stable region is obtained and presented

as

ea0 ¼
ffiffiffiffiffi
di
E1

r
: ð45Þ

The nonlinear wave speed is then derived and given as

Ncr ¼ dr þ di
F1
E1

� �
: ð46Þ

On the other hand, the condition for the film flow to

present the behavior of sub-critical instability in the

linearly stable region ðdi < 0Þ is given as E1 < 0, and the

threshold amplitude of the wave is given as ea0. The sub-
critical stable region can only be found as E1 > 0. The

neutral stability curve can only be derived and plotted

for the condition of E1 ¼ 0. Based on the above dis-

cussion, it is obvious that the Ginzburg–Landau equa-
Table 1

Various states of the Landau equation

Linearly stable

(sub-critical region)

di < 0

Sub-critical instability E1 < 0 ea0 <

ea0 >
Sub-critical (absolute)

stability E1 > 0

a0 ! 0

Linearly unstable

(supercritical region)

di > 0

Supercritical explosive state

E1 < 0

a0 "

Supercritical stability E1 > 0 ea0 !
Ncr !

Fig. 2. Neutral stability curves for thr
tion can be used to characterize various flow states. The

results are summarized and presented in Table 1.
4. Results and discussions

Physical parameters that are selected for study in-

clude (1) Reynolds numbers ranging from 0 to 15, (2) the

dimensionless perturbation wave numbers ranging from

0 to 0.12, (3) Rotation number including 0, 0.1 and 0.2

and (4) the values of dimensionless radius including 10,

20, 50 and 100. By setting di ¼ 0 in the linear stability

analysis, the neutral stability curve can be easily deter-

mined from Eq. (28). The a–Re plane is divided into two

different characteristic regions by the neutral stability

curve. One is the linearly stable region where small

disturbances decay with time and the other is the linearly
di
E1

� �1=2 a0 ! 0 Conditional stability

di
E1

� �1=2

a0 " Sub-critical explosive state

di
E1

� �1=2

dr þ di
F1
E1

ee different Ro values at R ¼ 20.
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unstable region where small perturbations grow as time

increases. In order to study the influence of rotation and

the radius of cylinder on the stability of the film flow, a

constant dimensionless surface tension is used through-

out for all numerical computations. The value is selected

as 6173.5 [15]. The other dimensionless parameters re-

lated to fluid properties are selected as Jakob number,

n ¼ 0:0872; Prandtl number, Pr ¼ 2:62; and density ra-

tio, b ¼ 0:000611.

4.1. Linear stability analysis

Fig. 2 shows the neutral stability curves of a con-

densate falling film flow with various values of Rotation

number. The results indicate that the area of linear

unstable region ðdi > 0Þ enlarges as the rotating speed

increase. Fig. 3(a) shows the effect of radius on the
Fig. 3. Neutral stability curves for four different R v
neutral stability curves when Ro ¼ 0. The results indi-

cate that the area of linearly unstable region ðdi > 0Þ
becomes larger for a decreasing R. Namely, a cylinder

with smaller radius induces the flow instability condi-

tion. This destabilizing effect occurs because the radius

of the trough of wave have a smaller value than that at

the crest of waves, and the surface tension will produce

large capillary pressure at the smaller radius of curva-

ture. This induces the capillary pressure force tending to

move the fluid trough to crest, thus increasing the

amplitude of wave. Fig. 3(b) shows the rotation effect

(Ro ¼ 0:1) on the neutral stability curves. The conclu-

sion of Fig. 3(c) does not hold anymore. As we can tell

from the figure, the ability to stabilize the flow field is no

longer proportional to the cylinder radius. This is be-

cause the rotating motion induces the centrifugal force.

This force is defined as the angular velocity multiplied
alues at (a) Ro ¼ 0; (b) Ro ¼ 0:1; (c) Ro ¼ 0:2.



Fig. 4. Amplitude growth rate of disturbed waves in conden-

sate flows for three different Ro values at (a) Re ¼ 10, R ¼ 20;

(b) a ¼ 0:06, R ¼ 20.

Fig. 5. Amplitude growth rate of disturbed waves in conden-

sate flows for four different R values at (a) Re ¼ 10, Ro ¼ 0; (b)

Re ¼ 10, Ro ¼ 0:1.
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by the cylinder radius and its direction is along with

outward of the r-direction. Therefore, it serves as the

destabilizing effect on the flow field. On the contrary,

the radius itself serves as the stabilizing factor. Once the

cylinder starts to rotate, the mutual influence between

radius and centrifugal force should be considered. The

cylinder with large radius will destabilize further under

the rotation motion. In the case of Ro ¼ 0:2, Fig. 3(c),
the tread of instability for the cylinder with larger radius

is much higher than those with smaller ones. Comparing

with Figs. 2 and 3(a)–(c), the cylinder with large radius

is more stable than the cylinder with smaller one when

Ro ¼ 0. As the cylinder starts to rotate, the cylinder

with large radius is no longer the most stable one.

This is because the centrifugal force destabilizes the flow

field.
The temporal growth rate of the film flow is also

computed by using Eq. (28). Fig. 4(a)–(b) show the

temporal film growth rate of a condensate fluid flowing

down a rotating cylinder at Ro ¼ 0:1, 0.2 and a sta-

tionary vertical cylinder (i.e. Ro ¼ 0). It is interesting to

note that temporal film growth rate decreases as the

values of both Ro and Re decrease. Furthermore, it is

found that both the wave number of neutral mode and

the maximum temporal film growth rate increase as the

value of Ro increases. In other words, the larger the

value of rotating parameter Ro is, the lower the stability

of a liquid film becomes. Fig. 5(a) and (b) show the

temporal film growth rate in rotating case of which

Rotation number is equal to 0 and 0.1 at various cyl-

inder radius. The result of these two figures is exactly the

same as the results of Fig. 3(a) and (b).
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4.2. Nonlinear stability analysis

As the perturbed wave grows to finite amplitude, the

linear stability theory is no longer valid for accurate

prediction of flow behavior. The nonlinear stability

analysis is used here to study the effect of finite-ampli-

tude disturbances on the change of stability behaviors in

the linearly stable region. In other words, we are looking

for the behavior of sub-critical instability in the linearly

stable region by using the nonlinear, instead of linear,

flow stability theory. By using the same nonlinear flow

stability theory, one can also characterize the flow

behaviors that subsequent nonlinear evolution of dis-

turbances in the linearly unstable region may be rede-

veloped to a new equilibrium state of finite amplitudes

(i.e. supercritical stability) or become unstable. The flow

instability in the linearly stable region, named sub-

critical instability, can be easily realized by setting the
Fig. 6. Neutral stability curve of condensate film flows for (a) R ¼ 20,

Ro ¼ 0:1.
variable E1 in Eq. (43) to a negative value. In other

words, if E1 < 0, the amplitude of disturbed waves in the

linearly stable region is possible to develop to a unstable

state, even though the prediction obtained by linear

analysis always gives stable result. The hatched areas in

Fig. 6(a)–(d) reveal that various conditions for the sub-

critical instability ðdi < 0;E1 < 0Þ, the sub-critical sta-

bilityðdi < 0;E1 > 0Þ, the supercritical stability ðdi > 0;
E1 > 0Þ and the explosive supercritical instability

ðdi > 0;E1 < 0Þ are possibly to occur for different

rotating speed.

Fig. 6(a)–(b) show that the neutral stability curves of

di ¼ 0 and E1 ¼ 0 are shifted as the values of Ro in-

crease. Therefore, the area of shaded sub-critical insta-

bility region ðdi < 0;E1 < 0Þ decreases and the area of

shaded supercritical instability region ðdi > 0;E1 < 0Þ
increases as the values of Ro increase. The area of

supercritical stability region ðdi > 0;E1 > 0Þ increases
Ro ¼ 0; (b) R ¼ 20, Ro ¼ 0:1; (c) R ¼ 50, Ro ¼ 0:1; (d) R ¼ 100,



Fig. 7. Threshold amplitude in sub-critical unstable region (a) for three different Ro values at Re ¼ 10, R ¼ 20; (b) for three different R
values at Re ¼ 10, Ro ¼ 0; (c) Re ¼ 10, Ro ¼ 0:1.
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and the area of sub-critical stability region ðdi < 0;
E1 > 0Þ decrease as the values of Ro increase. Fig. 6(b)–

(d) show that the neutral stability curves of di ¼ 0 and

E1 ¼ 0 are shifted as the values of R increase when

Ro ¼ 0:1.
Fig. 7(a) shows the threshold amplitude in sub-

critical unstable region for various wave numbers with

different Ro values at Re ¼ 10 and R ¼ 20. The results

indicate that the threshold amplitude ea0 becomes

smaller as the value of rotating parameter Ro increases.

The film flow which holds the higher threshold ampli-

tude value will become more stable than those hold

smaller one. If the initial finite-amplitude disturbance is

less than the threshold amplitude, the system will be-

come conditionally stable. Fig. 7(b) shows the threshold

amplitude in sub-critical unstable region for various
wave numbers with different values of radius R at

Re ¼ 10 and Ro ¼ 0. The results indicate that the

threshold amplitude ea0 becomes smaller as the value of

radius R decreasing. In Fig. 7(c), the result shows that

the threshold amplitude ea0 becomes smaller as the value

of radius R changing from 50, 20 to 100. This phe-

nomenon is the same as we discuss the results of Fig.

3(a) and (b).

In the linearly unstable region, the linear amplifica-

tion rate is positive, while the nonlinear amplification

rate is negative. Therefore, a linear infinitesimal distur-

bance in the unstable region, instead of becoming infi-

nite, will reach finite equilibrium amplitude as given in

Eq. (40). Fig. 8(a) shows the threshold amplitude in the

supercritical stable region for various wave numbers

under different values of rotating parameter Ro at



Fig. 8. Threshold amplitude in supercritical stable region (a) for three different Ro values at Re ¼ 10, R ¼ 20; (b) for three different R
values at Re ¼ 10, Ro ¼ 0; (c) Re ¼ 10, Ro ¼ 0:1.
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Re ¼ 10 and R ¼ 20. It is found that the decrease of Ro
will lower the threshold amplitude, and the flow will

become comparatively stable. Fig. 8(b) and (c) show the

same conclusion as we reach in the discussion of Fig.

7(b) and (c).

The wave speed of Eq. (28) predicted by using the

linear theory is a constant value for all wave number and

rotating parameter Ro. However, the wave speed of Eq.

(46) predicted by using nonlinear theory is no longer a

constant. It is actually a function of wave number,

Reynolds number, Rotation number and the radius of

cylinder. Fig. 9(a) shows the nonlinear wave speed in the

supercritical region for various perturbed wave numbers

and different Rotation number Ro ¼ 0, 0.1, 0.2 at

Re ¼ 10 and R ¼ 20. It is found that the nonlinear wave

speed increases as the value of Ro increases. Fig. 9(b)
shows the nonlinear wave speed in the supercritical

stable region for various perturbed wave numbers and

different cylinder radius R ¼ 20, 50 and 100 at Re ¼ 10

and Ro ¼ 0. Comparing with Fig. 9(b) and (c), the same

conclusion about the mutual influence of the cylinder

radius and the centrifugal force are also reached. When

the cylinder is stationary, the radius dominates the sta-

ble characteristics. As the cylinder starts to rotate, the

destabilizing influence of centrifugal force should be

considered seriously.
5. Conclusions

The stability of a condensate thin film flowing down

on the outer surface of a rotating vertical cylinder is



Fig. 9. Nonlinear wave speed in supercritical stable region (a) for three different Ro values at Re ¼ 10, R ¼ 20; (b) for three different R
values at Re ¼ 10, Ro ¼ 0; (c) Re ¼ 10, Ro ¼ 0:1.
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thoroughly investigated by using the method of long-

wave perturbation. Based on the results of numerical

modeling, three conclusions can be drawn as follows:

1. The neutral stability curve obtained from linear sta-

bility analysis separates the a–Re plane into two dif-

ferent characteristic regions. The modeling results

indicate the degree of stability is enhanced if the flow

is perturbed by waves with a lower Reynolds number,

a lower rotation speed and a greater radius of the cyl-

inder.

2. In the nonlinear stability analysis, it is noted that the

area of shaded sub-critical instability region and un-

shaded sub-critical stability region decreases as the

value of Ro increases and the value of R decreases.

On the other hand, the area of shaded supercritical

instability region and un-shaded supercritical stabil-

ity region increases with an increasing Ro value and

a decreasing R. It is shown that the threshold ampli-
tude ea0 in the sub-critical instability region decreases

as the value of Rotation number increases for a con-

stant cylinder radius. Both the threshold amplitude

and nonlinear wave speed in the supercritical stability

region decrease with a decreasing Ro value at the con-
stant radius.

3. The stability behaviors of a thin film flow are signif-

icantly affected by the values of Rotation number and

radius. The flow field becomes relatively unstable for

a large Rotation number and a small radius. When a

condensate thin film flows down on the outer surface

of a stationary vertical cylinder, the radius of cylinder

dominates the stability of flow field only. As the cyl-

inder starts to rotate, the induced centrifugal force

should be considered. That is because the radius of

cylinder and the rotation speed are mutually influ-

enced. The increasing radius serves as stabilizing fac-

tor, but the increasing rotation speed serves as

destabilizing factor.
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Appendix A

A.1. Zeroth order solution
u0 ¼ C
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where

q ¼ Rþ h;

Q ¼ Rþ h
R

¼ q
R
;

h0t ¼ 2Cðq2 � R2 � 2q2 lnQÞhz

þ n
aPe
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Appendix B. Generalized nonlinear kinematic equation
ht þ X ðhÞ þ AðhÞhz þ BðhÞhzz þ CðhÞhzzzz þ DðhÞh2z
þ EðhÞhzhzzz ¼ 0;

where
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